Approximating Continuous Functions by ReLU Nets of Minimal Width

نویسندگان

  • Boris Hanin
  • Mark Sellke
چکیده

This article concerns the expressive power of depth in deep feed-forward neural nets with ReLU activations. Specifically, we answer the following question: for a fixed d ≥ 1, what is the minimal width w so that neural nets with ReLU activations, input dimension d, hidden layer widths at most w, and arbitrary depth can approximate any continuous function of d variables arbitrarily well. It turns out that this minimal width is exactly equal to d+1. That is, if all the hidden layer widths are bounded by d, then even in the infinite depth limit, ReLU nets can only express a very limited class of functions. On the other hand, we show that any continuous function on the d-dimensional unit cube can be approximated to arbitrary precision by ReLU nets in which all hidden layers have width exactly d+ 1. Our construction gives quantitative depth estimates for such an approximation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations

This article concerns the expressive power of depth in neural nets with ReLU activations and bounded width. We are particularly interested in the following questions: what is the minimal width wmin(d) so that ReLU nets of width wmin(d) (and arbitrary depth) can approximate any continuous function on the unit cube [0, 1] aribitrarily well? For ReLU nets near this minimal width, what can one say ...

متن کامل

Optimal approximation of piecewise smooth functions using deep ReLU neural networks

We study the necessary and sufficient complexity of ReLU neural networks—in terms of depth and number of weights—which is required for approximating classifier functions in an L-sense. As a model class, we consider the set E(R) of possibly discontinuous piecewise C functions f : [−1/2, 1/2] → R, where the different “smooth regions” of f are separated by C hypersurfaces. For given dimension d ≥ ...

متن کامل

Quantified advantage of discontinuous weight selection in approximations with deep neural networks

We consider approximations of 1D Lipschitz functions by deep ReLU networks of a fixed width. We prove that without the assumption of continuous weight selection the uniform approximation error is lower than with this assumption at least by a factor logarithmic in the size of the network.

متن کامل

Provable approximation properties for deep neural networks

We discuss approximation of functions using deep neural nets. Given a function f on a d-dimensional manifold Γ ⊂ R, we construct a sparsely-connected depth-4 neural network and bound its error in approximating f . The size of the network depends on dimension and curvature of the manifold Γ, the complexity of f , in terms of its wavelet description, and only weakly on the ambient dimension m. Es...

متن کامل

The Expressive Power of Neural Networks: A View from the Width

The expressive power of neural networks is important for understanding deep learning. Most existing works consider this problem from the view of the depth of a network. In this paper, we study how width affects the expressiveness of neural networks. Classical results state that depth-bounded (e.g. depth-2) networks with suitable activation functions are universal approximators. We show a univer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11278  شماره 

صفحات  -

تاریخ انتشار 2017